Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(8)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34439902

RESUMO

In this paper, a method to discriminate between two target RNA sequences that differ by one nucleotide only is presented. The method relies on the formation of alternative structures, i.e., quadruplex-duplex hybrid (QDH) and duplex with dangling ends (Dss), after hybridization of DNA or RNA G-rich oligonucleotides with target sequences containing 5'-GGGCUGG-3' or 5'-GGGCGGG-3' fragments. Using biophysical methods, we studied the effect of oligonucleotide types (DNA, RNA), non-nucleotide modifications (aliphatic linkers or abasic), and covalently attached G4 ligand on the ability of G-rich oligonucleotides to assemble a G-quadruplex motif. We demonstrated that all examined non-nucleotide modifications could mimic the external loops in the G-quadruplex domain of QDH structures without affecting their stability. Additionally, some modifications, in particular the presence of two abasic residues in the G-rich oligonucleotide, can induce the formation of non-canonical QDH instead of the Dss structure upon hybridization to a target sequence containing the GGGCUGG motif. Our results offer new insight into the sequential requirements for the formation of G-quadruplexes and provide important data on the effects of non-nucleotide modifications on G-quadruplex formation.


Assuntos
DNA/genética , Quadruplex G , Polimorfismo de Nucleotídeo Único , RNA/genética , Dicroísmo Circular , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência , Conformação de Ácido Nucleico , Oligonucleotídeos/genética , Ligação Proteica , RNA/metabolismo , Raios Ultravioleta
2.
Cell Mol Life Sci ; 78(7): 3709-3724, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33733306

RESUMO

Guanine (G)-rich single-stranded nucleic acids can adopt G-quadruplex structures. Accumulating evidence indicates that G-quadruplexes serve important regulatory roles in fundamental biological processes such as DNA replication, transcription, and translation, while aberrant G-quadruplex formation is linked to genome instability and cancer. Understanding the biological functions played by G-quadruplexes requires detailed knowledge of their protein interactome. Here, we report that both RNA and DNA G-quadruplexes are bound by human Dicer in vitro. Using in vitro binding assays, mutation studies, and computational modeling we demonstrate that G-quadruplexes can interact with the Platform-PAZ-Connector helix cassette of Dicer, the region responsible for anchoring microRNA precursors (pre-miRNAs). Consequently, we show that G-quadruplexes efficiently and stably inhibit the cleavage of pre-miRNA by Dicer. Our data highlight the potential of human Dicer for binding of G-quadruplexes and allow us to propose a G-quadruplex-driven sequestration mechanism of Dicer regulation.


Assuntos
RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/genética , DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Quadruplex G , MicroRNAs/metabolismo , RNA/metabolismo , Ribonuclease III/antagonistas & inibidores , Ribonuclease III/genética , RNA Helicases DEAD-box/metabolismo , DNA/química , DNA/genética , Inibidores Enzimáticos/química , Humanos , MicroRNAs/genética , Conformação de Ácido Nucleico , Conformação Proteica , RNA/química , RNA/genética , Ribonuclease III/metabolismo
3.
Biosci Rep ; 41(1)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33351058

RESUMO

RNA-based tools are frequently used to modulate gene expression in living cells. However, the stability and effectiveness of such RNA-based tools is limited by cellular nuclease activity. One way to increase RNA's resistance to nucleases is to replace its D-ribose backbone with L-ribose isomers. This modification changes chirality of an entire RNA molecule to L-form giving it more chance of survival when introduced into cells. Recently, we have described the activity of left-handed hammerhead ribozyme (L-Rz, L-HH) that can specifically hydrolyse RNA with the opposite chirality at a predetermined location. To understand the structural background of the RNA specific cleavage in a heterochiral complex, we used circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy as well as performed molecular modelling and dynamics simulations of homo- and heterochiral RNA complexes. The active ribozyme-target heterochiral complex showed a mixed chirality as well as low field imino proton NMR signals. We modelled the 3D structures of the oligoribonucleotides with their ribozyme counterparts of reciprocal chirality. L- or D-ribozyme formed a stable, homochiral helix 2, and two short double heterochiral helixes 1 and 3 of D- or L-RNA strand thorough irregular Watson-Crick base pairs. The formation of the heterochiral complexes is supported by the result of simulation molecular dynamics. These new observations suggest that L-catalytic nucleic acids can be used as tools in translational biology and diagnostics.


Assuntos
RNA Catalítico/química , RNA/química , Dicroísmo Circular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Conformação Proteica , Estereoisomerismo
4.
Cells ; 9(11)2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138194

RESUMO

Antisense DNA oligonucleotides, short interfering RNAs (siRNAs), and CRISPR/Cas9 genetic tools are the most useful therapeutic nucleic acids regulating gene expression based on the antisense specificity towards messenger RNA. Here, we present an effective novel strategy for inhibiting translation based on the antisense-controlled formation of an RNA quadruplex-duplex hybrid (QDH) between a G-rich RNA antisense oligoribonucleotide (Q-ASO) and specific mRNA, comprising two distant G-tracts. We selected epidermal growth factor receptor (EGFR) as a well-established target protein in anticancer therapy. The chemically modified, bi-functional anti-EGFR Q-ASO and a 56-nt long EGFR mRNA fragment, in the presence of potassium ions, were shown to form in vitro very stable parallel G-quadruplex containing a 28-nt long external loop folding to two duplex-stem structure. Besides, the Q-ASOs effectively reduced EGFR mRNA levels compared to the non-modified RNA and DNA antisense oligonucleotides (rASO, dASO). In addition, the hybridization specificity of Q-ASO comprising a covalently attached fluorescent tag was confirmed in living cells by visualization of the G4 green fluorescent species in the presence of other antisense inhibitors under competitive conditions. The results presented here offer novel insights into the potential application of Q-ASOs for the detection and/or alteration of (patho)biological processes through RNA:RNA quadruplex-duplex formation in cellular systems.


Assuntos
Receptores ErbB/metabolismo , Quadruplex G , Oligorribonucleotídeos Antissenso/metabolismo , RNA Mensageiro/genética , Sobrevivência Celular , Fluorescência , Inativação Gênica , Células HeLa , Humanos , Mitocôndrias/metabolismo , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Oligorribonucleotídeos Antissenso/química , Espectroscopia de Prótons por Ressonância Magnética , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Temperatura
5.
J Antibiot (Tokyo) ; 71(8): 757-761, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29700424

RESUMO

A new metabolite, cyclic dipeptide, cis-(3S,8aS)-3-(3,4-dihydroxybenzyl)hexahydropyrrolo[1,2-a]pyrazine-1,4-dione, named JS-3 was isolated from Streptomyces sp. 8812 fermentation broth. Its chemical structure was established by means of spectroscopic analysis. A wide-range-screening study, which included inhibition assay of DD-carboxypeptidase/transpeptidase activity, determination of antibacterial, antifungal, and antiproliferative activities as well as free-radical scavenging was performed. To authors knowledge, this is the first isolation of such compound from natural sources and the first one from bacteria, Streptomyces.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Carboxipeptidases/antagonistas & inibidores , Dicetopiperazinas/farmacologia , Dipeptídeos/farmacologia , Peptidil Transferases/antagonistas & inibidores , Streptomyces/metabolismo , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Bactérias/efeitos dos fármacos , Dicetopiperazinas/isolamento & purificação , Dicetopiperazinas/metabolismo , Dipeptídeos/isolamento & purificação , Dipeptídeos/metabolismo , Fermentação , Fungos/efeitos dos fármacos
6.
J Inorg Biochem ; 181: 65-73, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29407909

RESUMO

Dehaloperoxidase-hemoglobin is the first hemoglobin identified with biologically-relevant oxidative functions, which include peroxidase, peroxygenase and oxidase activities. Herein we report a study of the protein backbone dynamics of DHP using heteronuclear NMR relaxation methods and molecular dynamics (MD) simulations to address the role of protein dynamics in switching from one function to another. The results show that DHP's backbone helical regions and turns have average order parameters of S2 = 0.87 ±â€¯0.03 and S2 = 0.76 ±â€¯0.08, respectively. Furthermore, DHP is primarily a monomer in solution based on the overall tumbling correlation time τm is 9.49 ±â€¯1.65 ns calculated using the prolate diffusion tensor model in the program relax. A number of amino acid residues have significant Rex using the Lipari-Szabo model-free formalism. These include Lys3, Ile6, Leu13, Gln18, Arg32, Ser48, Met49, Thr56, Phe60, Arg69, Thr71 Cys73, Ala77, Asn81, Gly95, Arg109, Phe115, Leu127 and Met136, which may experience slow conformational motions on the microseconds-milliseconds time scale according to the model. Caution should be used when the model contains >4 fitting parameters. The program caver3.0 was used to identify tunnels inside DHP obtained from MD simulation snapshots that are consistent with the importance of the Xe binding site, which is located at the central intersection of the tunnels. These tunnels provide diffusion pathways for small ligands such as O2, H2O and H2O2 to enter the distal pocket independently of the trajectory of substrates and inhibitors, both of which are aromatic molecules.


Assuntos
Hemoglobinas/metabolismo , Modelos Moleculares , Peroxidases/metabolismo , Poliquetos/enzimologia , Algoritmos , Animais , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Hemoglobinas/química , Hemoglobinas/genética , Histidina/química , Histidina/genética , Histidina/metabolismo , Cinética , Ligantes , Simulação de Dinâmica Molecular , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Peroxidases/química , Peroxidases/genética , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Xenônio/química , Xenônio/metabolismo
7.
Nat Commun ; 8(1): 2020, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209051

RESUMO

The original version of this Article contained an error in the spelling of the author Steven M. Coyne, which was incorrectly given as Stephen M. Coyne. This has now been corrected in both the PDF and HTML versions of the Article.

8.
Nat Commun ; 8(1): 1127, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066746

RESUMO

RNA G-quadruplex (RG4) structures are involved in multiple biological processes. Recent genome-wide analyses of human mRNA transcriptome identified thousands of putative intramolecular RG4s that readily assemble in vitro but shown to be unfolded in vivo. Previously, we have shown that mature cytoplasmic tRNAs are cleaved during stress response to produce tRNA fragments that function to repress translation in vivo. Here we report that these bioactive tRNA fragments assemble into intermolecular RG4s. We provide evidence for the formation of uniquely stable tetramolecular RG4 structures consisting of five tetrad layers formed by 5'-terminal oligoguanine motifs of an individual tRNA fragment. RG4 is required for functions of tRNA fragments in the regulation of mRNA translation, a critical component of cellular stress response. RG4 disruption abrogates tRNA fragments ability to trigger the formation of Stress Granules in vivo. Collectively, our data rationalize the existence of naturally occurring RG4-assembling tRNA fragments and emphasize their regulatory roles.


Assuntos
Quadruplex G , Estudo de Associação Genômica Ampla , RNA de Transferência/química , Arabidopsis/genética , Dicroísmo Circular , Guanina/química , Humanos , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA/química , RNA Mensageiro/química , Transcriptoma
9.
Int J Biochem Cell Biol ; 92: 148-154, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28989078

RESUMO

The folding of tRNA fragments (tRFs) into G-quadruplex structures and the implications of G-quadruplexes in translational inhibition have been studied mainly in mammalian systems. To increase our knowledge of these phenomena, we determined the influence of human and plant tRFs and model G-quadruplexes on translation in rabbit reticulocyte lysate and wheat germ extract. The efficiency of translational inhibition in the mammalian system was strongly associated with the type of G-quadruplex topology. In the plant system, the ability of a small RNA to adopt the G-quadruplex conformation was not sufficient to repress translation, indicating the importance of other structural determinants.


Assuntos
Quadruplex G , Biossíntese de Proteínas , RNA de Plantas/química , RNA de Plantas/genética , RNA de Transferência/química , RNA de Transferência/genética , Animais , Sequência de Bases , Coelhos , Triticum/genética
10.
Acta Biochim Pol ; 63(4): 609-621, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27801425

RESUMO

G-quadruplexes are non-canonical secondary structures which may be formed by guanine rich sequences, both in vitro and in living cells. The number of biological functions assigned to these structural motifs has grown rapidly since the discovery of their involvement in the telomere maintenance. Knowledge of the G-quadruplexes' three-dimensional structures plays an important role in understanding of their conformational diversity, physiological functions, and in the design of novel drugs targeting the G-quadruplexes. In the last decades, structural studies have been mainly focused on the DNA G-quadruplexes. Their RNA counterparts gained an increased interest along with a still-emerging recognition of the central role of RNA in multiple cellular processes. In this review we focus on structural properties of the RNA G-quadruplexes, based on high-resolution structures available in the RCSB PDB data base and on structural models. In addition, we point out the current challenges in this field of research.


Assuntos
Quadruplex G , Sequência de Bases , DNA/química , Humanos , Modelos Moleculares , RNA/química
11.
PLoS One ; 11(2): e0149478, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26908023

RESUMO

This is the first report to provide comprehensive thermodynamic and structural data concerning duplex, hairpin, quadruplex and i-motif structures in ß-L-RNA series. Herein we confirm that, within the limits of experimental error, the thermodynamic stability of enantiomeric structural motifs is the same as that of naturally occurring D-RNA counterparts. In addition, formation of D-RNA/L-RNA heterochiral duplexes is also observed; however, their thermodynamic stability is significantly reduced in reference to homochiral D-RNA duplexes. The presence of three locked nucleic acid (LNA) residues within the D-RNA strand diminishes the negative effect of the enantiomeric, complementary L-RNA strand in the formation of heterochiral RNA duplexes. Similar behavior is also observed for heterochiral LNA-2'-O-methyl-D-RNA/L-RNA duplexes. The formation of heterochiral duplexes was confirmed by 1H NMR spectroscopy. The CD curves of homochiral L-RNA structural motifs are always reversed, whereas CD curves of heterochiral duplexes present individual features dependent on the composition of chiral strands.


Assuntos
RNA/química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Oligonucleotídeos/química , Estabilidade de RNA , Termodinâmica
12.
Nucleic Acids Res ; 44(5): 2409-16, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26743003

RESUMO

Fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS) are neurodegenerative disorders caused by the pathogenic expansion of CGG triplet repeats in the FMR1 gene. FXTAS is likely to be caused by a 'toxic' gain-of-function of the FMR1 mRNA. We provide evidence for the existence of a novel quadruplex architecture comprising CGG repeats. The 8-bromoguanosine ((Br)G)-modified molecule GC(Br)GGCGGC forms a duplex in solution and self-associates via the major groove to form a four-stranded, antiparallel (GC(Br)GGCGGC)4 RNA quadruplex with (Br)G3:G6:(Br)G3:G6 tetrads sandwiched between mixed G:C:G:C tetrads. Self-association of Watson-Crick duplexes to form a four-stranded structure has previously been predicted; however, no experimental evidence was provided. This novel four-stranded RNA structure was characterized using a variety of experimental methods, such as native gel electrophoresis, NMR spectroscopy, small-angle X-ray scattering and electrospray ionization mass spectrometry.


Assuntos
Quadruplex G , RNA Mensageiro/química , Expansão das Repetições de Trinucleotídeos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Expressão Gênica , Guanosina/análogos & derivados , Guanosina/química , Humanos , Modelos Moleculares , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
PLoS One ; 9(11): e113848, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25423301

RESUMO

The generally accepted model of the miRNA-guided RNA down-regulation suggests that mature miRNA targets mRNA in a nucleotide sequence-specific manner. However, we have shown that the nucleotide sequence of miRNA is not the only determinant of miRNA specificity. Using specific nucleases, T1, V1 and S1 as well as NMR, UV/Vis and CD spectroscopies, we found that miR-21, miR-93 and miR-296 can adopt hairpin and/or homoduplex structures. The secondary structure of those miRNAs in solution is a function of RNA concentration and ionic conditions. Additionally, we have shown that a formation of miRNA hairpin is facilitated by cellular environment.Looking for functional consequences of this observation, we have perceived that structure of these miRNAs resemble RNA aptamers, short oligonucleotides forming a stable 3D structures with a high affinity and specificity for their targets. We compared structures of anti-tenascin C (anti-Tn-C) aptamers, which inhibit brain tumor glioblastoma multiforme (GBM, WHO IV) and selected miRNA. A strong overexpression of miR-21, miR-93 as well Tn-C in GBM may imply some connections between them. The structural similarity of these miRNA hairpins and anti-Tn-C aptamers indicates that miRNAs may function also beyond RISC and are even more sophisticated regulators, that it was previously expected. We think that the knowledge of the miRNA structure may give a new insight into miRNA-dependent gene regulation mechanism and be a step forward in the understanding their function and involvement in cancerogenesis. This may improve design process of anti-miRNA therapeutics.


Assuntos
MicroRNAs/química , Conformação de Ácido Nucleico , Sequência de Bases , Humanos , MicroRNAs/genética , Homologia de Sequência do Ácido Nucleico
14.
Nucleic Acids Res ; 42(15): 10196-207, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25081212

RESUMO

Trinucleotide repeats are microsatellite sequences that are polymorphic in length. Their expansion in specific genes underlies a number of neurodegenerative disorders. Using ultraviolet-visible, circular dichroism, nuclear magnetic resonance (NMR) spectroscopies and electrospray ionization mass spectrometry, the structural preferences of RNA molecules composed of two and four repeats of AGG, CGG and UGG in the presence of K(+), Na(+) and NH4 (+) were analysed. (AGG)2A, (AGG)4A, p(UGG)2U and p(UGG)4U strongly prefer folding into G-quadruplexes, whereas CGG-containing sequences can adopt different types of structure depending on the cation and on the number of repeats. In particular, the two-repeat CGG sequence folds into a G-quadruplex in potassium buffer. We also found that each G-quadruplex fold is different: A:(G:G:G:G)A hexads were found for (AGG)2A, whereas mixed G:C:G:C tetrads and U-tetrads were observed in the NMR spectra of G(CGG)2C and p(UGG)2U, respectively. Finally, our NMR study highlights the influence of the strand sequence on the structure formed, and the influence of the intracellular environment on the folding. Importantly, we highlight that although potassium ions are prevalent in cells, the structures observed in the HeLa cell extract are not always the same as those prevailing in biophysical studies in the presence of K(+) ions.


Assuntos
Quadruplex G , RNA/química , Células HeLa , Humanos , Dobramento de RNA , Repetições de Trinucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...